We also shouldn't overlook the fact that the proposal entirely glosses over the implication of the alternative benefits we might realize if humanity achieved the incredible engineering and technical capacity necessary to make this version of space AI happen.
Think about it. Elon conjures up a vision of the future where we've managed to increase our solar cell manufacturing capacity by two whole orders of magnitude and have the space launch capability for all of it along with tons and tons of other stuff and the best he comes up with is...GPUs in orbit?
This is essentially the superhero gadget technology problem, where comic books and movies gloss over the the civilization changing implications of some technology the hero invents to punch bad guys harder. Don't get me wrong, the idea of orbiting data centers is kind of cool if we can pull it off. But being able to pull if off implies an ability to do a lot more interesting things. The problem is that this is both wildly overambitious and somehow incredibly myopic at the same time.
A lot of great inventions we now take for granted initially came with little motivation other than being able to kill each other more effectively. GPS, radar, jet engines, drones, super glue, microwaves, canned food, computers, even the internet. Contrary to the narrative of the internet being about sharing science, ARPANET was pushed by the DoD as a means of maintaining comms during nuclear war. It was then adopted by universities and research labs and started along the trajectory most are more familiar with.
The tale of computers is even more absurd. The first programmable, electric, and general-purpose digital computer was ENIAC. [1] It was built to... calculate artillery firing tables. I expect in the future that the idea of putting a bunch of solar into space to run GPUs for LLMs will probably seem, at the minimum - quaint, but that doesn't mean the story ends there.
That’s not the point of the person you are replying to. They are saying if we somehow come up with the tech that makes harnessing the sun a thing, the best we can still do is put a bunch of GPUs in space? It makes no sense.
It kinda does make sense if you consider that solar panels in space have been used for a very long time (to power satellites). However, getting the electricity they generate down to Earth is very complicated, so you end up having to use it in space, and one of few things that would make sense for that is indeed data centers, because getting the data to Earth is easier (and Elon already handily has a solution for that).
However I'm curious how many solar panels you would need to power a typical data center. Are we talking something like a large satellite, or rather a huge satellite with ISS-size solar arrays bolted on? Getting rid of the copious amounts of heat that data centers generate might also be a challenge (https://en.wikipedia.org/wiki/Spacecraft_thermal_control)...
> It kinda does make sense if you consider that solar panels in space have been used for a very long time (to power satellites).
It stops making sense the second you ask how you’d dissipate the heat any GPU would create. Sure, you could have vapour chambers. To where? Would this need square kilometers of radiators on top of square kilometers of solar panels? All this just to have Grok in space?
You have a dark radiating side on the back of the solar panels. You can spread the GPUs around the solar panels. All the energy in comes from the sun so the temperature should be much the same as any dark panel like object floating in sunlight in space.
No, temperature does not decrease significantly when objects are in the shadows, unless hey stay there for a long time. Even when they don’t get energy from solar radiation, they still dissipate it by radiative transfer, which is very inefficient. So they cool down slowly.
I assume the idea is that they'll be in a solar orbit, so there will be a perpetually sun facing side and a perpetually shaded side. The exact physics behind radiating the heat out in this setup are unclear to me, but it seems difficult to imagine that it would pose significant, let alone insurmountable, difficulties.
Random objects floating in space do not have GPUs on them which generate heat. You need to move the heat from GPUs to a radiator, so you are describing the actual solution of radiators in a roundabout way. Radiators weigh an amount and cost money. The consequence of factoring this in with optimistic assumptions is that it's about 1/4 as efficient to build space compute as earth compute. It's hype bullshit.
Elon cannot change the laws of Physics, is not a serious person, and has no particular engineering skills. He is not authoritative on almost anything. He’s just cosplaying.
Elon is not a good person to ask on technical matters like this given both his history of saying really silly things about space-related technologies and his enormous incentive to lie to attract investors.
The plan seems to be for lots and lots of smaller satellites.
For inferencing it can work well. One satellite could contain a handful of CPUs and do batch inferencing of even very large models, perhaps in the beginning at low speeds. Currently most AI workloads are interactive but I can't see that staying true for long, as things improve and they can be trusted to work independently for longer it makes more sense to just queue stuff up and not worry about exactly how high your TTFT is.
For training I don't see it today. In future maybe. But then, most AI workloads in future should be inferencing not training anyway.
I think the most providers all give high latency batch APIs significant discounts. A lot of AI workloads feel batch-oriented to me, or could be once they move beyond the prototype and testing phases. Chat will end up being a small fraction of load in the long term.
>Getting rid of the copious amounts of heat that data centers generate might also be a challenge
at 70 Celsius - normal for GPU - 1.5m2 radiates something like 1KWt (which requires 4m2 of panels to collect), so doesn't look to a be an issue. (some look to ISS which is a bad example - the ISS needs 20 Celsius, and black body radiation is T^4)
So for the ISS at 20c you'd get 481 W/m^2 so you'd only need 2.3m2.
So comparing the ISS at 20c to space datacenters at 70c you get an improvement of 63%. Nice, but doesn't feel game-changing.
The power radiated is T^4, but 70c is only about 17.1% warmer than 20c because you need to compare in kelvin.
>The power radiated is T^4, but 70c is only about 17.1% warmer than 20c because you need to compare in kelvin.
17% in T^4 is almost 2x - plugging 293 (in Kelvin of course) in the calculator i get 417 W/m2 vs. 784W/m2 that i got earlier for the 343 (Kelvin for the 70 Celsius).
The ISS targets rejecting 70KW and has something like 140m2 of radiators. These radiators are attached to the ISS and use a lot of plumbing to carry the cooling liquid.
Where is GPUs and everything can be attached directly to the radiators and solar panels. So 70KW - 70 GPUs - can be placed right onto the 10m by 10m radiator panel. In front of those GPUs sitting on that radiator - a 15m by 20m solar panels assembly. Whole thing is less than 1 ton. Between $10K and $100K on Starship.
oh, we'll sure find a way to weaponize that energy for example - just imagine all those panels simultaneously turning their reflective back in a way to form gigantic mirror to focus reflected solar energy on your enemy, be that enemy in space or on the Earth/Moon/Mars ground. Basically space-scale version of 'death ray scyscrapper' https://www.businessinsider.com/death-ray-skyscraper-is-wrea....
Back in the day the Star Wars program was intending to use nuclear explosions to power the lasers, i guess once all that solar for AI gets deployed in space we wouldn't need the explosions anymore.
Interesting that such space deployment can deny access to space to anybody else, and that means that any competitive superpower has to rush to deploy similar scale system of their own. Space race v2.
Pick any Gundam series and watch the last 5 or 6 episodes, at least through the Gundam SEED/Destiny era. At least part of the plot will invariably include a space-based superweapon being deployed by one side of the war to end all wars and the the plot for a few episodes will include the other side engaging in a series of challenges to keep that from firing again and destroying it if possible.
That's even more reason that if we manage to increase the amount of solar energy cells by 1000x there are so many more effective ways to use it than immediately flinging them into space. They're not getting constructed as satellites mid-orbit, after all.
The problem Elon is trying to address is a societal one, not a technical one. The amount of push back on clean energy generation and manufacturing prevents data centers on earth from being as feasible as they should be. He only got his newly opened xAI data center open using temporary generators on trailers and skirting the permitting process by using laws designed for things like traveling circuses.
Maybe pushback is valid. Why do we need an order of magnitude more datacenters with attendant energy demand and strain on the surround people and environment? What is this meant to achieve?
I'm not supporter of capitalism, but what Elon is doing is the same as any other business or capitalist participant. He is seeing current demand and anticipating future demand and building systems to meet that demand. I have no desire for society to fulfill whims of the ruling elite but I don't think Elon is doing this on a whim anymore than any business doing any thing likely to make them money.
I don't think Elon is motivated purely by money. If he were, a lot of his actions don't make any sense, like tanking his own public image repeatedly by doing silly childish things.
It's more likely that he genuinely believes that he's building the future of human civilization, and he wants himself in charge of that so that he can shape it how he sees fit.
You're right that our socioeconomic system unfortunately doesn't have any guardrails for that kind of behavior. Arguably that's a bug (or yet another symptom of the architecture being fundamentally flawed).
I think the Colossus[1] predated the ENIAC but is still in line with your general theme of doing stuff for the military. In this case it was used for cipher breaking, not firing calculations.
You could argue that it doesn't really count though because it was only turing complete in theory: "A Colossus computer was thus not a fully Turing complete machine. However, University of San Francisco professor Benjamin Wells has shown that if all ten Colossus machines made were rearranged in a specific cluster, then the entire set of computers could have simulated a universal Turing machine, and thus be Turing complete."
Yes, but isn't that pretty much the point of the person you replied to? We know that a lot of inventions were motivated by that, and so it is incredibly myopic to not pause and try to think through the likely far broader implications.
Scaling photovoltaic production doesn't seem likely to have many broader implications on its own. At best, it makes it easier to change the grid to renewable power, if you ignore the intermittency problem that still exists even at huge scales. PV fabs aren't really reusable for other purposes though, and PV tech is pretty mature already, so it's not clear what scaling that up will do.
Scaling rocketry has several fascinating implications but Elon already covered many of them in his blog post.
Scaling AI - just read the HN front page every day ;)
What are we missing here? Some combinatoric thing?
Scaling up PV production to the point where we could convert the entire Earth's electricity generation to solar is incredibly significant.
Yes there's the problem of intermittency, varying sun availability and so forth - which is why solar will never provide 100% of our power and we'll also need grid-scale storage facilities and domestic batteries and all sorts of stuff - but just imagine being able to make that many panels in the first place! Literally solar on every roof, that's transformative.
But sure, let's send it all to space to power questionable "AI" datacentres so we can make more fake nudes.
> doesn't seem likely to have many broader implications on its own
Considering how foundational energy is to our modern economy, energy several orders of magnitude cheaper seems quite likely to have massive implications.
Yes it might be intermittent, but I'm quite confident that somebody will figure out how to effectively convert intermittent energy costing millicents into useful products and services.
If nothing else, incredibly cheap intermittent energy can be cheaply converted to non-intermittent energy inefficiently, or to produce the enablers for that.
> Scaling photovoltaic production doesn't seem likely to have many broader implications on its own
Musk is suggesting manufacture at a scale sufficient to keep the Earth's entire land area
tiled in working PV.
If the maths I've just looked at is correct (first glance said yes but I wouldn't swear to it), that on the ground would warm the earth by 22 C just by being darker than soil; that in the correct orbit would cool it by 33 C by blocking sunlight.
Just scratching at the surface, assuming the increase in production capacity is only realistically possible if you can bring prices down (or this "project" would start to consume a proportion of economic output large enough to seem implausible), you can address the intermittency problem in several ways:
Driving down the cost makes massive overprovision a means of reducing the intermittency because you will be able to cover demand at proportionally far lower output, which also means you'll be able to cover demands in far larger areas, even before looking at storage.
But lower solar costs would also make storage more cost effective, since power cost will be a lower proportion of the amortised cost of the total system. Same with increasing transmission investments to allow smoothing load. Ever cost drop for solar will make it able to cover a larger proportion of total power demand, and we're nowhere near maximising viable total capacity even at current costs.
A whole lot of industrial costs are also affected by energy prices. Drive down this down, and you should expect price drops in other areas as well as industrial uses where energy expensive processes are not cost-effective today.
The geopolitical consequences of a dramatic acceleration of the drop in dependency on oil and gas would also take decades to play out.
At the same time, if you can drive down the cost of energy by making solar so much cheaper, you also make earth-bound data centres more cost-competive, and the cost-advantage of space-bound data centres would be accordingly lower.
I think it's an interesting idea to explore (but there's the whole issue of cooling being far harder in space), but I also think the effects would be far broader. By all means, if Musk wants to poor resources into making solar cheap enough for this kind of project to be viable, he should go ahead - maybe it'll consume enough of time to give him less time to plan a teenage edgelor - because I think the societal effects of driving down energy costs would generally be positive, AI or not, it just screams of being a justification for an xAI purchase done mostly for his personal financial engineering.
Well computers are a funny story. The groundwork had been laid and the theoretical and engineering advances that would produce programmable digital computers were well underway in the 1930s. It would have happened very soon even if there was no war, but of course WWII happened right in 1939, so obviously computers made at that time had the purpose of calculating artillery paths or decrypting German messages. But it would be incorrect to say that military applications in WWII are the reason computers were invented.
You phrased it in a way as we decided to or somebody even asked us. I don't think that's how it works.
Humans don't sit together and decide their future, we aren't that coordinated or united.
But people like Elon and other people or groups, with the right resources, network, luck, talent and money build their vision of the future and how it turns out nobody knows until it happens.
Bollocks, by your standards we can't discuss the most vile people because 'nobody's perfect' but there is a huge gap between the likes of Musk and ordinary people.
Indeed, at least a $700 billion gap. One is reminded of a great Mark Twain quote, "Whereas principle is a great and noble protection against showy and degrading vanities and vices, poverty is worth six of it."
The problem is that the Venn diagram of 'vile people' and 'billionaires' has a lot of overlap so these people are doing a disproportionate amount of damage.
Not to go heads I win, tails you lose, but even if we go down this path - it's the same story because militaries are investing heavily in LLM stuff, both overtly and covertly. Outside of its obvious uses in modeling, data management, and other such things - there also seems to be a fairly widespread belief, among the powers that be, that if you just say the magic words to somebody, that you can make them believe anything. So hyper-scaling LLM potential has direct military application, same as Starlink and Starship.
"The Victorian Internet" gives it its due. And its drawbacks - didn't work at night or in bad weather. It was very expensive as it needed human operators and towers. Only simple messages could be transmitted. And it was slow.
Morse's electrical single wire telegraph was an instant success and quickly transformed the world. It wasn't an evolutionary advance over the Chappe, it was revolutionary.
There were also electric lights before Edison's lightbulb. But Edison invented a lightbulb that was simple, cheap, reliable, and it worked. Hence his bulb gets the nod. He nailed it.
It depends, how versatile was the Greek signaling system?
AFAIK the Télégraphe Chappe was the first general purpose telegraph able to send arbitrary messages, and was used by both the administration (for civilian as well as military purpose) and the private sector for business.
> Contrary to the narrative of the internet being about sharing science, ARPANET was pushed by the DoD as a means of maintaining comms during nuclear war.
[citation needed]
Because according to Bob Taylor, who initially got the funding for what became ARPANET:
> Taylor had been the young director of the office within the Defense Department’s Advanced Research Projects Agency overseeing computer research, and he was the one who had started theARPANET . The project had embodied the most peaceful intentions—to link computers at scientific laboratories across the country so that researchers might share computer resources. Taylor knew theARPANET and its progeny, the Internet, had nothing to do with supporting or surviving war—never did.Yet he felt fairly alone in carrying that knowledge.
> Lately, the mainstream press had picked up the grim myth of a nuclear survival scenario and had presented it as an established truth. When* Time magazine committed the error, Taylor wrote a letter to the editor, but the magazine didn’t print it. The effort to set the record straight was like chasing the wind; Taylor was beginning to feel like a crank.
> Taylor told the ARPA director he needed to discuss funding for a networking experiment he had in mind. Herzfeld had talked about networking with Taylor a bit already, so the idea wasn’t new to him. He had also visited Taylor’s office, where he witnessed the annoying exercise of logging on to three different computers. And a few years earlier he had even fallen under the spell of Licklider himself when he attended Lick’s lectures on interactive computing.
> Taylor gave his boss a quick briefing: IPTO contractors, most of whom were at research universities, were beginning to request more and more computer resources. Every principal investigator, it seemed, wanted his own computer. Not only was there an obvious duplication of effort across the research community, but it was getting damned expensive. Computers weren’t small and they weren’t cheap. Why not try tying them all together? By building a system of electronic links between machines, researchers doing similar work in different parts of the country could share resources and results more easily. […]
* Wizards § Chapter 1
The first four IMPs were UCLA, SRI, UCSB, and Utah. Then BBN, MIT, RAND, System Development Corp., and
Harvard. Next Lincoln Laboratory and Stanford, and by the end of 1970 Carnegie-Mellon University and Case Western Reserve University.
It was only "later in the 1970s" that command and control was considered more (Lukasik):
But the first two people who get the project going, Taylor and Herzfeld, were about the efficient use of expensive computer resources for research. Look at the firs >dozen sites and they were about linking researchers: the first DoD site wasn't connected until 3-4 years after things go going, and there was nothing classified about it. MILNET didn't occur until 1984:
> But being able to pull if off implies an ability to do a lot more interesting things.
Those interesting things won't pump up the perceived value of Musk companies to stratospheric levels - or dare I say - to the moon. He needs the public to believe that to earn the trillion-dollar package from the Tesla-Twitter-SpaceX conglomerate, even if the latter turns out to be the only profitable arm of the conglomerate.
This is a question that analysts don't even ask on earnings calls for companies with lowly earthbound datacenters full of the same GPUs.
The stock moves based on the same promise that's already unchecked without this new "in space" suffix:
We'll build datacenters using money we don't have yet, fill them with GPUs we haven't secured or even sourced, power them with infrastructure that can't be built in the promised time, and profit on their inference time over an ever-increasing (on paper) lifespan.
My cynical take is that it'll works out just fine for the data centers, but the neighbouring communities won't care for the constant rolling blackouts.
Okay but even in that case the hardware suffers significant under utilisation which massively hits RoI. (I think I read they only achieve 30% utilisation in this scenario)
That article appears to be stuck behind a paywall, so I can't speak to it.
That's good for now, but considering the federal push to prevent states from creating AI regulations, and the overall technological oligopoly we have going on, I wonder if, in the near future, their energy requirements might get prioritized. Again, cynical. Possibly making up scenarios. I'm just concerned when more and more centers pop up in communities with less protections.
Not really. GPUs are stateless so your bounded lifetime regardless of how much you use them is the lifetime of the shitties capacitor on there (essentially). Modulo a design defect or manufacturing defect, I’d expect a usable lifetime of at least 10 years, well beyond the manufacturer’s desire to support the drivers for it (ie the sw should “fail” first).
The silicon itself does wear out. Dopant migration or something, I'm not an expert. Three years is probably too low but they do die. GPUs dying during training runs was a major engineering problem that had to be tackled to build LLMs.
> GPUs dying during training runs was a major engineering problem that had to be tackled to build LLMs.
The scale there is a little bit different. If you're training an LLM with 10,000 tightly-coupled GPUs where one failure could kill the entire job, then your mean time to failure drops by that factor of 10,000. What is a trivial risk in a single-GPU home setup would become a daily occurrence at that scale.
Starlink yes, at 480 km LEO. But the article says "put AI satellites into deep space". Also if you think about it, LEO orbits have dark periods so not great.
Stop linking this same Wikipedia page if you're not going to expound it with further details or evidence. I'm holding you accountable for following HN guidelines here.
A "fully and rapidly reusable" Starship would bring the cost of launch down orders of magnitude, perhaps to a level where it makes sense to send up satellites to repair/refuel other satellites.
That's not a new problem that no one has dealt with before. The ISS for instance has its External Active Thermal Control System (EACTS).
It's not so much a matter of whether it's an unsolvable problem but more like, how expensive is it to solve this problem, what are its limitations, and does the project still makes economic sense once you factor all that in?
It's worth noting that the EACTS can at maximum dissipate 70kW of waste heat. And EEACTS (the original heat exchange system) can only dissipate another 14kW.
That is together less than a single AI inference rack.
And to achieve that the EACTS needs 6 radiator ORUs each spanning 23 meters by 11 meters and with a mass of 1100 kg. So that's 1500 square meters and 6 and a half metric tons before you factor in any of the actual refrigerant, pumps, support beams, valve assemblies, rotary joints, or cold side heat exchangers all of which will probably together double the mass you need to put in orbit.
There is no situation where that makes sense.
-----------
Manufacturing in space makes sense (all kinds of techniques are theoretically easier in zero G and hard vacuum).
Mining asteroids, etc makes sense.
Datacenters in space for people on earth? That's just stupid.
Your calculations are based on cooling to 20c, which is exponentially harder than cooling to 70c where GPUs are happy. Radiators would be roughly 1/3 the size of the panels for 70c.
I get that vacuum is a really good insulator, which is why we use it to insulate our drinks bottles. So disposing of the heat is a problem.
Can't we use it, though? Like, I dunno, to take a really stupid example: boil water and run a turbine with the waste heat? Convert some of it back to electricity?
It's a good question, but in a closed system (like you have in space) the heat from the turbine loop has to go somewhere in order to make it useful. Let's say you have a coolant loop for the gpus (maybe glycol). You take the hot glycol, run it through your heat exchanger and heat up your cool, pressurized ammonia. The ammonia gets hot (and now the glycol is cool, send it back). You then take the ammonia and send it through the turbine and it evaporates as it expands and loses pressure to spin the turbine. But now what? You have warm, vaporized, low pressure ammonia, and now you need to cool it down to start over. Once it's cool you can pressurize it again so you can heat it up to use again, but you have to cool it, and that's the crux of the issue.
The problem is essentially that everything you do releases waste heat, so you either reject it, or everything continues to heat up until something breaks. Developing useful work from that heat only helps if it helps reject it, but it's more efficient to reject it immediately.
A better, more direct way to think about this might be to look at the Seebeck effect. If you have a giant radiator, you could put a Peltier module between it and you GPU cooling loop and generate a little electricity, but that would necessarily also create some waste heat, so you're better off cooling the GPU directly.
I think I get it. If we could convert 100% of the waste heat into useful power, then all good. And that would get interesting because it would effectively become "free" compute - you'd put enough power into the system to start it, and then it could continue running on its own waste heat. A perpetual motion machine but for computing.
But we can't do that, because physics. Everything we could do to generate useful energy from waste heat also generates some waste heat that cannot be captured by that same process. So there will always be some waste heat that can't be converted to useful energy, which needs to be ejected or it accumulates and everything melts.
What do you do with the steam afterwards? If you eject it, you have to bring lots of it with your spacecraft, and that costs serious money. If you let it condensate to get water again, all you did is moving some heat inside the spacecraft, almost certainly creating even more heat when doing that.
However there are workarounds. People are talking like the only radiator design is the one on the ISS. There are other ways to build radiators. It's all about surface area. One way is to heat up a liquid and then spray it openly into space on a level trajectory towards a collecting dish. Because the liquid is now lots of tiny droplets the surface area is huge, so they can radiate a lot of heat. You don't need a large amount of material as long as you can scoop up the droplets the other end of the "pipe" and avoid wasting too much. Maybe small amounts of loss are OK if you have an automated space robot that goes around docking with them and topping them up again.
The ISS consumes roughly 90kW. That’s about *one* modern AI/ML server rack. To do that they need 1000 m^2 of radiator panels (EACTS). So that’s the math: every rack needs another square kilometer of stuff put into orbit. Doesn’t make sense to me.
And what happens every time a rack (or node) fails? Does someone go out and try to fix it? Do we just "deorbit" it? How many tons per second of crap would we be burning in the upper atmosphere now? What are the consequences of that?
How do the racks (or nodes) talk to eachother? Radios? Lasers?
What about the Kessler Syndrome?
Not a rocket scientist but 100% agree this sounds like a dead end.
Communication is a well-understood problem, and SpaceX already has Starlink. They might need pretty high bandwidth, but that's not necessarily much of a problem in space. Latency could be a problem, except that AI training isn't the sort of problem where you care about latency.
I'd be curious where exactly they plan to put these datacenters... In low Earth orbit they would eventually reenter, which makes them a pollution source and you'd have no solar power half the time.
Parking them at the Earth-Sun L1 point would be better for solar power, but it would be more expensive to get stuff there.
Seasons mess that up unless you're burning fuel to make minor plane changes every day. Otherwise you have an equinox where your plane faces the sun (equivalent to an equatorial orbit) and a solstice where your plane is parallel to the sun (the ideal case).
Huh, I didn't know that that was possible without burning fuel. Kind of wild that it only works because the Earth has an equatorial bulge and isn't an exact sphere.
It makes sense to target a higher operating temperature, like 375K. At some point, the energy budget would reach an equilibrium. The Earth constantly absorbs solar energy and also dissipates the heat only by radiative cooling. But the equilibrium temperature of the Earth is still kind of cool.
I guess the trick lies in the operating temperature and the geometry of the satellites.
Asking for a friend (who sucks at thermodynamics:) could you use a heat pump to cool down the cold end more and heat up the hot end much higher? Heat radiation works better the higher the temperature?
40% isn't much in the grand scheme of things, but maybe they can reach higher reduction with more research/materials. Mass and power are pretty cheap for spaceX, so shipping more solar panels and a heap pump might not be a deal breaker.
Would e.g. a reduction of 90% in radiator area change the overall picture on the overall feasibility? I think not, it would still be ludicrous, but I'd be happy to be proven wrong.
The radiator area is probably not what they need to worry about that much as we thought. When the energy input comes from solar 100%, they just need to optimize the ratio of the sectional area facing the sun over the total surface area of the satellite. If the ratio is low enough, like a fin or cone shaped object, it will be harder to be hot.
Are we not talking about radiating away the energy used to run the DC ? I assume the solar panels should face the sun, radiate leftover energy away, hopefully as little as possible as solar cells get more efficient.
The radiators are for dissipating the waste heat coming from the data center equipment. I'd agree they better not be pointed at the sun ;) In fact, the DC should probably hide behind the solar array to not pick up extra heat from the sun.
The radiators, also behind the solar array, will also be hot because of the DC waste heat being conducted there ;)
The distinction is that what they are doing for Webb is trying to dissipate small amounts of heat that would warm up sensors past cryogenic temperatures.
Like on the order of tens or hundreds of watts but -100C.
Dissipating heat for an AI datacenter is a different game. A single AI inference or training rack is going to be putting out somewhere around 100kW of waste heat. Temps don't have to be cryogenic but it's the difference between chiselling a marble or jade statue and excavating a quarry.
That's a solution for minuscule amounts of heat that nevertheless disturb extremely sensitive scientific experiments. Using gold, no less. This does not scale to a crapton of GPU waste heat.
Heat exchanger melts salts, salts boil off? Some kind of potential in there to use evaporants for attitude/altitude correction. Spitballing. Once your use case also has a business case, scope to innovate grows.
Anything is possible here, it's just there's no goddamn reason to do any of this. You're giving up the easiest means of cooling for no benefit and you add other big downsides.
It's scifi nonsense for no purpose other than to sound cool.
Getting better at creating and erecting solar panels & AI datacenters on earth is all well and good, but it doesn't advance SpaceX or humanity very much. At lot of the bottlenecks there are around moving physical mass and paperwork.
Whereas combining SpaceX & xAI together means the margins for AI are used to force the economies of scale which drives the manufacturing efficiencies needed to drive down launch etc.
Which opens up new markets like Mars etc.
It is also pushing their competitive advantage. It leaves a massive moat which makes it very hard for competitors. If xAI ends up with a lower cost of capital (big if - like Amazon this might take 20 years horizon to realize) but it would give them a massive moat to be vertically integrated. OpenAI and others would be priced out.
If xAI wants to double AI capacity then it's a purely an automation of manufacturing problem which plays to Elons strengths (Tesla & automation). For anyone on earth doubling capacity means working with electricity restrictions, licensing, bureaucracy, etc. For example all turbines needed for electricity plants are sold years in advance. You can't get a new thermal plant built & online within 5 years even if you had infinite money as turbines are highly complex and just not available.
Hmm, Elon really did run that flywheel pretty well. He built the Roadster to drum up some cash and excitement so he could develop the Model S, then he used that success to do the Model X, and then he expanded capacity to develop the 3 and Y, and he reinvested the profits to develop the Model 2, finally bringing EVs to the masses, displacing ICEs everywhere, and becoming the undisputed leader of both EV and battery manufacturering.
Oh wait, that didn’t actually happen, because he got distracted or something? He doesn’t really have battery capacity worth writing home about, the Chinese are surpassing Tesla in EV manufacturing, and Waymo is far ahead in self-driving.
The amazing space computation cost reduction process sounds rather more challenging than the Model 2, and I’m not sure why anyone should bet on Elon pulling it off.
Not sure how you can say that. Nothing lasts forever, especially in the face of Chinese market dumping, but for a while there Tesla really was the undisputed king of EV manufacturing, that flywheel is how he got there, he did release all the patents because he said from day one he didn't anticipate or aim for 100% market share for Tesla and assumed there'd always be lots of EV manufacturers in future. All that sounds like - mission accomplished?
As for Waymo being ahead, maybe today. But Waymo's tech stack is largely pre-DL, they rely heavily on unscalable techniques like LIDAR and continuous mapping. Tesla is betting big on the "scale up neural networks" model we know works well and their FSD can drive everywhere. They're perhaps behind Waymo in some ways, but they're also in different markets - Waymo won't sell anyone a self driving car and Tesla will. I wouldn't count them out. Their trajectory is the right one.
> I’m not sure why anyone should bet on Elon pulling it off.
PayPal, SpaceX existing at all, then doing reusable rockets, Tesla, FSD, large scale battery manufacturing, Starlink, X ("he can't fire 80% of employees it'll crash immediately"), robotics, training a SOTA LLM so fast even Jensen Huang was shocked ... the man consistently pulls off impossible seeming things in the face of huge skepticism. How many examples does it take before people start taking the guy seriously? Infinity examples?
Paypal is in no way a Musk creation, no one makes that claim and in fact they got rid of him quite quickly.
X has plummeted in value, and is worth a fraction of what he paid for it? How is this "pulling it off" by shrinking the user base, revenue, etc? While we don't have publicly audited figures, they announced a net loss for the first three quarters of 2025, while it posted profits prior to his purchase.
FSD isn't even real? Why would you cite a feature that doesn't actually exist as an example of "Elon pulling it off"? He promised FSD would be available over a decade ago, and it's still not real.
> How many examples does it take before people start taking the guy seriously?
I'd personally settle for real examples, and not the false ones cited above.
What, exactly, is unscalable about LiDAR? BYD appears to be planning to include LiDAR (one unit, presumably forward facing) in even their cheapest cars effective quite soon, and they seem to have a few tens of thousands of LiDAR units already on the road.
And Waymo’s solution is expensive but seems to scale fine.
Meanwhile, there is certainly nothing inherently that prevents scaling a pure-vision approach that relies on massive in-car computation, but Tesla wants to use their AI5 chips and they seem to be struggling to produce and scale them. (They also apparently want to launch them into space, but it’s not really clear that they exist.)
They have to map every road ahead of time and keep their maps up to date. That's been true for the entire time Waymo's tech has existed. Tesla is trying to solve FSD without laser maps, which is a harder problem but can scale up much faster.
Tesla invested into the first Lotus roadster - and put that cash into the S then the X. Used that cash to build the worlds largest factories and make the 3 & Y which sold at enormous volumes - so large in fact that the S & X are now tiny single percentages of sales which is why Tesla is stopping manufacturing them now.
Tesla is one of the very few vehicle manufactures which makes a profit manufacturing vehicles. Tesla throws off cash which allows the flywheel to keep spinning.
Tesla is now operating fully autonomous rides. They've constantly proved their naysayers wrong at every turn in time. What the Chinese are doing in battery tech is irrelevant to US vehicles as they will never be allowed to sell in the US which is Teslas largest market.
The model 2 has the possibility of being profitable at insanely low purchase price which has the potential to completely disrupt the economics of US sales in such a way that legacy auto could well be bankrupt in 5-10 years. Who will be making Waymo's vehicles then?
Tesla isn't even in the top 15 auto manufacturers by volume? The largest manufacturer Toyota produces 9x the cars Tesla does. Tesla is also on a multiyear sales drop with no sign of sales improvement.
The top 15 car makers produced 70 million cars, to Tesla's 1.7m. They have no enormous volume, at all.
If Tesla's stock traded in line with its competitors, its a $30-40B company. The hype around future growth (now completely off the charts) is the only reason the stock price is out of line with reality. There is no reason to expect Tesla's sales figures to improve going forward, in fact, they will continue to decrease.
> Tesla throws off cash which allows the flywheel to keep spinning
Tesla had a profit of $3.8b in 2025 (this is a 46% drop from 2024 and a second year over year drop). It's revenue was $94b (also less than 2024), which places it 12th among auto manufacturers. It's profit is 6th, which is a decent margin compared to legacy makers, but as mentioned above, the profit is plummeting as Tesla struggles to sell cars. It's revenue among all global companies is not even in the top 100.
It does not "throw off cash", the business is in a tailspin.
>They've constantly proved their naysayers wrong at every turn in time
Musk has been promising full self driving mode is within six months to a year away. He first made those claims in the mid 2010s? Do Tesla's have full self driving mode in 2026?
There is a decade long trail of failed claims from Musk and Tesla.
In 2019, Musk predicted 1 million Tesla robotaxis on the road by 2020. How many Tesla robotaxis are on the road in 2026? Fifty? One hundred? It's a rounding error compared to the claim that they'd have a million in 2020...
Musk said in 2019 that he believed Tesla vehicles were not traditional depreciating assets and instead could appreciate because they contained future-value technologies, especially Full Self-Driving (FSD): “I think the most profound thing is that if you buy a Tesla today, I believe you are buying an appreciating asset — not a depreciating asset.”
In fact, Tesla's are among the worst depreciating vehicles on the market today, their depreciation compares to the low end car market of Nissan, Hyundai and other low quality manfacturers.
Elon projected 250-500k Cybertruck sales per year. In reality, they sold 38k in 2024, and just 16k in 2025.
>They've constantly proved their naysayers wrong at every turn in time
Hey remember that time someone had their Tesla running down the highway and the superior self-driving capability failed to see an 18 wheeler that crossed the road and the person was decapitated and there are videos of that complete with blood spray?
There is nothing we need on Mars other than science. It's not a market because there isn't money to be made outside of what is required to do whatever economically useless but scientifically valuable efforts we can convince people to fund.
We can't build an independent colony we can't live there any time soon. Arguably it may never make sense to live there.
1. Mankind never systematically lived in caves; that's just where remains and rock paintings are more likely to have survived.
2. Farming didn't evolve from a vision of "let's stay in one place, so let's find a way to do it"; it evolved from the gradual application of accumulated practical knowledge under real constraints until eventually it was possible to stay in one place. If Paleoelon had somehow convinced early humanity to abandon hunter-gathering and settle into a sedentary life because he had a vision for new markets around farming it would have led to the earliest famine.
While what you say is mostly correct, the lifestyle switch to farming was determined not by some random gradual accumulation of knowledge during the previous million years, but by accelerated accumulation of knowledge during a few thousand years at most, which was caused by the dwindling hunting resources, which forced humans to abandon the lifestyle that they had for a couple million years and switch to a lifestyle where the staple food consisted of plant seeds, with anything else providing much less of the nutrient intake. Only after a few more thousand years, raising domestic animals allowed the return to a more diverse diet.
Switching to a farming lifestyle was certainly not done by choice, but to avoid death by starvation, as we now know that this has caused various health problems, especially in the beginning, presumably until experience has taught them to achieve a more balanced diet, by combining at least 3 kinds of plant seeds, 2 with complementary amino acid profile and 1 kind of oily seeds for essential fatty acids (the most ancient farming societies have combined barley or einkorn or emmer wheat with lentils or peas or a few other legumes less used today and with flax seeds).
Yes, your description of how farming and sedentary lifestyle progressed is much more accurate than my somewhat clumsy attempt. My intention was to emphasise that such a transformative event in human history did not take place thanks to visionaries going against the grain [0] , but rather through a long and complex process.
In this context, 'systematically' is a qualifier to the adverb 'never'. It serves as a disclaimer to avoid someone pointing out that, well actually, some humans have lived in caves and do so to the present day.
This was one of the first things that made me realise how un-serious Musk was about Mars.
Paraphrasing him, "You can be the first pizza restaurant owners on Mars" and "The price of a ticket isn't far off the price of a house, normal people can get a loan for it". What bank in their right mind would lend even just $100k to a normal person for a ticket to a place, let alone one with worse economic prospects than La Güera in Western Sahara?*
Don't get me wrong, if there was any seriousness behind this I was, and might still be, excited by the prospect of a new world… but even if I had not soured on Musk politically, I would not trust his plans when they come with this level of attention to detail (not even in rhetoric).
* I don't trust LLMs where I can't verify them, but I did ask it for a vibe check about the cost of research needed for making a pizza from ISRU on mars, and the first step was water purification for which it estimated a few hundred million, and a combined cost with all the other steps 4-10 billion (before launches)
It's always better to generate electricity on the ground than attempt to beam it to the ground from space. The efficiency loss of beamed power is huge.
The efficiency loss of nighttime is approximately 100% if we’re talking about solar energy. At least at a most basic level, it’s not totally absurd to stick some kind of power beaming contraption in space where it is mostly not shadowed by the Earth and beam power to a ground station.
Any process for beaming power from *outside Earth's shadow* to a point on the ground within the shadow (i.e. local night), necessarily can also send power from somewhere else on the ground that is in sun, even though the planet is in the way (ground->space->ground).
I wouldn't be too surprised by beamed power being used on Mars, because that planet has global dust storms during which nowhere on the surface is getting much light, but it doesn't make as much sense here: because of the atmospheric window, you either use 0.4µm-to-10µm-wavelengths or 10cm-to-10m-wavelengths* with not much in between, µm means lasers and the mere possibility you may have included lasers powerful enough to be useful means everyone else will demand something similar to the IEA nuclear inspection program or will put similar lasers on the ground and shoot them upward to destroy those satellites, while cm-wavelengths means each ground station is a *contiguous* roughly 10km diameter oval.
Given the expensive part of large-scale PV has shifted from the PV itself to the support structures they're on, the ground station ends up about the same cost as a same-sized PV installation, and because that's just the ground station this remains true even if all the space-side components are zero cost. Normal ground-based PV also has the advantage that it doesn't need to be contiguous.
It is also possible to use a purely-ground-based method to transfer power from the other side of the world; a cable thick enough that the resistance is only 1 Ω the long way around is already within the industrial capacity of China, but the same geopolitical issues that would make people hostile to foreign beamed power satellites also makes such a cable a non-starter for non-technical reasons.
I concur it’s not necessarily totally absurd — but when you consider that such contraptions require large — very large! — receiving arrays to be built on the ground, it’s hard to avoid concluding that building gigantic photovoltaic arrays in, say Arizona (for the US) along with batteries for overnight buffering and transmission lines would still be massively more efficient.
Is that more or less absurd than making deals with our neighbours to share their electricity? Build some solar farms around the planet and then distribute it over wire.
I honestly don't know the answer. I know there's some efficiency loss running over long wires too but I don't know what's more realistic.
In theory you can do HVDC over long distances. In practice that doesn't help much. Power would normally want to run north to south (not gonna do HVDC across the oceans anytime soon), and so the terminator hits you at the same time everywhere. It's got to be batteries if you want PV at scale.
The practical difficulties aren't really long distance transmission though. They're political and engineering. Spain had a massive blackout recently because a PV farm in the south west developed a timing glitch and they couldn't control the grid frequency - that nearly took out all of Europe and the power wasn't even being transmitted long distance! The level of trust you need to build a giant integrated continent-wide power grid is off the charts and it's not clear it's sustainable over the long run. E.g. the EU threatened to cut Britain's electricity supplies during Brexit as a negotiating tactic and that wasn't even war.
The political issues in space are mostly launch related, right? Once you have the birds up nobody cares about anything except space junk and bandwidth. They're getting experience of solving those with Starlink already. And if you can find a way to put the satellites really far out there's plenty of space - inferencing satellites don't need to be close to Earth, low latency chat stuff can stay on the ground and the flying servers can just do batch.
The politics on the ground is much harder. Countries own the land, you need lots of permits, electricity generation is in contest with other uses.
We have these things called batteries, you charge them during the day, and drain them at night.
A solar+battery setup is already cheaper than a new gas plant. Beaming power from space is absolutely asinine, quite frankly. The losses are absurd, the sun already does it 24/7, and we know how to make wires and batteries to shuffle the sun's power around however we need to. Why on earth would we involve satellites?
Beaming energy always sucks. Without some very fundamental discoveries in physics nobody will every make this work economically. This isn't just an engineering problem, it's a physics problem.
Right up to the radiation limit and then you'll either have to throttle your precious GPUs or you'll be melting your satellite or at least the guts of it. You're looking at an absolutely massive radiator here, many times larger than the solar panels that collect the energy to begin with.
> > absolutely massive radiator here, many times larger than the solar panels
> A_radiator / A_PV = ~3;
Seems like you're in agreement. There's a couple more issues here--
1. Solar panels are typically big compared to the rest of the satellite bus. How much radiator area do you need per 700W GPU at some reasonable solar panel efficiency?
2. Getting the satellite overall to an average 27C temperature doesn't necessarily keep the GPU cool; the satellite is not isothermal.
My back of the envelope estimate says you need about 2.5 square meters of radiator (perhaps more) to cool a 700W GPU and the solar panel powering the GPU. You can fit about 100 of these GPUs in a typical liquid-cooled rack, so you need about 250 square meters of radiator to match one rack. And, unfortunately, you can't easily use an inflatable structure, etc, because you need to conduct or convect heat into that radiator.
This assumes that you lose no additional heat in moving heat or in power conversion.
And they’re going to mass a -lot-. Not that anyone would use a pyramid— you would want panels with the side facing the sun radiating too. There are plenty of surfaces that radiate more than they absorb at reasonable temperatures in sunlight.
First of all a note on my calculations: they appear very simple, and its intentional, its not actually optimized, its intended to give programmers (who enjoyed basic high school physics but not more) the insight that cooling in space while hard, is still feasible. If you look around the thread you'll find categorical statements that cooling in space is essentially impossible etc.
The most efficient design and the most theoretically convincing one are not in general the same. I intentionally veer towards a configuration that shows it's possible without requiring radiating surface with an area of a square Astronomical Unit. Minimizing the physics and mathematics prerequisites results in a suboptimal but comprehensible design. This forum is not filled with physicists and engineers in the physical sciences, most commenters are programmers. To convince them I should only add the absolute minimum and configure my design to eliminate annoying integrals (for example the heat radiated by earth on the satellite is sidestepped by simply sacrificing 2 of the triangular sides of the pyramid to be mere reflectors of emissivity ~0, this way we can ignore the presence of a nearby lukewarm earth). Another example is the choice of a pyramid: it is convex and none of the surfaces are exactly parallel to the sun rays (which would result in ambiguity or doubt, or make the configuration sensitive to the exact orientation of the satellite), a more important consequence of selecting a convex shape is that we don't have to worry about heat radiated from one part of the satellite surface, being reabsorbed by another surface of the satellite (in view of the first surface), a convex shape insures no surface patch can see another surface patch of the satellite. And yes I pretend no heat is radiated by the solar panel itself, which is entirely achievable. So I intentionally sacrifice a lot of opportunities for more optimal design to show programmers (who are not trained in mathematical analysis, and not trained with physics textbook theorem-proof-theorem-proof-definition-theorem-proof-...) that physically it is not in the real of the impossible and doesn't result in absurdly high radiator/solar panel area ratios.
To convince a skeptic you 1) make pessimistic suboptimal estimates with a lot of room for improvement and 2) make sure those estimates require as little math and physics as possible, just the bare minimum to qualitatively and quantitatively understand the thermodynamics of a simple example.
You are asking the right questions :)
Given the considerations just discussed I feel OK forwarding you to the example mini cluster in the following section:
It describes a 230 kW system that can pretrain a 405B parameter model in ~17 days and is composed of 16x DGX B200 nodes, each node carrying 8x B200 GPUs. The naive but simple to understand pyramid satellite would require a square base (solar PV) side length of 30 m. This means the tip of the pyramid is ~90m away from the center of the solar panel square. This gives a general idea of a machine capable of training a 405B parameter model in 17 days.
We can naively scale down from 230 kW to 700 W and conclude the square base PV side length can then be 1.66 m; and the tip being 5 m "higher".
For 100 such 700 W GPU's we just multiply by 10: 16.6 m side length and the tip of the pyramid being 50 m out of the plane of the square solar panel base.
Why bother with all this crazy geometry? Why not just area as I've done above? You can design a radiator so that barely any of the light shines back on the spacecraft.
Your differences from my number: A) you're working based on spacecraft average temperature and not realizing you're going to have a substantial thermal drop; B) you're assuming just one side of the surface radiates. They're on the same order of magnitude. Both of us are assuming that cooling systems, power systems, and other support systems make no heat.
You can pick a color that absorbs very little visible light but readily emits in infrared-- so being in the sun doesn't matter so much, and since planetshine is pulling you towards something less than room temperature, it's not too bad either.
None of these numbers make me think "oh, that's easy". You're proposing a structure that's a big fraction of the size of the ISS for one rack of GPUs.
I don't really think cooling in space is easy. The things I have to do to get rid of an intermittent load of 40W on a small satellite are very very annoying. The idea of getting rid of a constant load of tens of kilowatts, or more, makes me sweat.
As I said, my geometry and properties are chosen to be easy to understand with a minimum of knowledge and mathematics.
Yes, I could make more optimistic calculations: use the steradians occupied by earth, find and use the thermal IR emissivities of solar panels place many thin layers of glass before the solar panel allowing energy generating photons through and forming a series of thermal IR black body radiators as a heat shield in thermal IR, the base also radiates heat outwards and at a higher temperature, use nonsquare base, target a somewhat higher but still acceptable temperature, etc... but all of those complicate the explanation, risking to lose readers in the details, readers that confuse the low net radiative heat transfer between similar temperature objects and room walls in the same room as if similar situation applies for radiative heat transfer when the counterbody is 4 K. Readers that half understand vacuum flasks / dewars: no or fewer gas particles in a vacuum means no or less energy those particles can collectively transport, that is correct but ignores the measures taken to prevent radiative heat loss. For example if the vacuum flask wasn't mirror coated but black-body coated then 100 deg C tea isolated from room temperature in a vacuum flask is roughly 400 K versus 300 K, but Stefan Boltzmann carries it to the fourth power (4/3) ^ 4 = 3.16 ! That vacuum flask would work very poorly if the heat radiated from the tea side to the room-temperature side was 3 times higher than the heat radiated by the room temperature side to the tea-side. The mirroring is critical in a vacuum flask. A lot of people think its just the vacuum effect and blindly generalize it to space. Just read the myriad of comments in these discussions. People seriously underestimate the capabilities of radiative cooling because the few situations they have encountered it, it was intentionally minimized or the heat flows were balanced by equilibrium, not representative for a system optimized to exploit radiative heat transfer.
Some small corrections:
>Both of us are assuming that cooling systems, power systems, and other support systems make no heat.
I do not make this assumption! all heat generated in the cooling, power and other support systems stem from electrical energy used to power them, and that energy came from the solar panels. The sum of the heat generated in the solar panel and the electrical energy liberated in the solar panel must equal the unreflected incident optical power. So we can ignore how efficient the solar panel is for the rest temperature calculation, any electrical energy will be transformed to heat and needs to be dissipated but by conservation of energy this sum total of heat and electrical energies turned into heat must simply equal the unreflected energy incident on the solar panel... The solar panel efficiencies do of course matter a lot for the final dimensions and mass of the satellite, but the rest temperature is dictated by the ratio of the height of the pyramid to the square base side length.
>You can pick a color that absorbs very little visible light but readily emits in infrared-- so being in the sun doesn't matter so much, and since planetshine is pulling you towards something less than room temperature, it's not too bad either.
emissivity (between 0 and 1) simultaneously dials how well it absorbs photons at that wavelength as well as how efficiently it sheds energy at that wavelength. A higher emissivity allows the solar panel to cool faster spontaneously, but at the cost of absorbing thermal photons from the sun more easily! Perhaps you are recollecting the optimization for the thermal IR window of our atmosphere, the reason that works is because it works comparatively to solar panels that don't exploit maximum emissivity in this small window. The atmospheric IR window location in the spectrum is irrelevant in space however.
> A) you're working based on spacecraft average temperature and not realizing you're going to have a substantial thermal drop;
of course I realize there will be a thermal gradient from base to apex of the pyramidal satellite, it is in fact good news: near the solar panel base the triangular sides have wider area and hotter temperature, so it sheds heat faster than assuming a homogenous temperature (since the shedding is proportional to the fourth power of temperature). When I ignore it it's not because I'm handwaving it away, it's because I don't wish to bore computer science audience with integral calculations, even if they bring better news. Before bringing the better news you need to bring the good news that its possible with similar order of magnitude areas for the radiator compared to the solar panels, without their insight that its feasible first, its impossible to make them understand the more complicated realistic and better news picture, especially if they want to not believe it... Without such proof many people would assume the surface of the radiator would need to be 10's to 100's of times the surface area of the solar panels...
> B) you're assuming just one side of the surface radiates.
No, I even explicitly state I only utilize 2 of the 4 side triangles of the pyramid (to sidestep criticisms that earth is also radiating heat onto the satellite). So I make a more pessimistic calculation and handicap my didactic example just to show you get non-extreme surface ratios even when handicapping
the design. If you look at history of physics, you will often find that insights were obtained much earlier by prior individuals, but the community only accepted the new insights when the experimental design was simplified to such an extent that every criticism is implicitly encoded in the design by making it irrelevant in the setup, this is not explicitly visible in many of the designs.
> I do not make this assumption! all heat generated in the cooling, power and other support systems
Nah -- when we're talking about how much it takes to power 70kW of GPUs, we need to include some kind of power utilization efficiency number. If 70kW is really 100kW, then we need to make this ridiculously big design 40% larger.
> >You can pick a color that absorbs very little *visible light* but readily emits in *infrared*-
> how well it absorbs photons at that wavelength as well as how efficiently it sheds energy at that wavelength.
Yes. Planetshine is infrared, 290K-ish; sunshine is 5500K-ish and planetary albedo is close enough to this, with a very small portion of its light being infrared. You are being long winded and not even reading what you reply to.
So, for example, white silicate paint or aluminized FEP has a equilibrium temperature in full sun, with negligible heat conducted to or away from it, somewhere in the span of -70 to -40C depending upon your assumptions. It will happily net radiate away heat from above-room temperature components while facing the sun.
It will also happily net radiate away heat when facing the planet because the planet is under room temperature and the planet doesn't subtend a whole hemisphere even in LEO.
I don't really like argument from authority, but... I will point out that I am the PI for multiple satellite projects and have owned thermal design, and that the stuff I've flown in space has ended up at very close to predicted temperatures. I don't feel like this is an easy thermal problem.
I mean, it's easy in the sense of "it takes a radiator area about the same as the floor area of my house". It's not easy in the sense of "holy shit I need to launch a radiator that's bigger than my house and somehow conduct all that heat to it while keeping the source cool."
> of course I realize there will be a thermal gradient from base to apex of the pyramidal satellite
No, there will be a thermal gradient from the hot thing -- the GPU -- to the radiator surface. S-B analysis is OK for an exterior temperature, but it doesn't mean the stuff you want to keep cool will be that average temperature. This is why we end up with heat pipes, active cooling loops, etc, in spacecraft.
If this wasn't a concern, you could fly a big inflated-and-then-rigidized structure and getting lots of area wouldn't be scary. But since you need to think about circulating fluids and actively conducting heat this is much less pleasant.
Datacenter capacity (and thus heat) grows by the cube law, but the ability to radiate heat grows by the square law, so it seems like it would be advantageous to have a bunch of smaller satellites, if you were concerned about cooling them.
> it would be advantageous to have a bunch of smaller satellites, if you were concerned about cooling them.
...That's only relevant if you start from the position that your datacenters have to be space.
You could already make smaller datacenters on earth, and still have better cooling, if you were concerned about that. We don't do that because on earth it's more efficient to have one large datacenter than many small ones.
If we (as in "civilization") were able to produce that many solar panels, we should cover all the deserts with them. It will also shift the local climate balance towards a more habitable ecosystem, enabling first vegetation and then slowly growing the rest of the food chain.
> It will also shift the local climate balance towards a more habitable ecosystem, enabling first vegetation and then slowly growing the rest of the food chain.
Depends on the deserts in question and knock-on effects: Saharan Dust Feeds Amazon’s Plants.
for solar panels that are say 25% efficient, that means 75% of optical energy is turned into heat, whereas the sand had a relatively high albedo, its going to significantly heat up the local environment!
OK I read the story (it was shorten than expected).
So simplistically put there are 3 periods:
1) the grassy period before overgrazing, lot of wind
2) the overgrazed period, loss of moisture retained by plants and loss of root systems, lot of wind results in soil run-away erosion without sufficient root systems
3) the solar PV period: at higher heights still lots of wind, but the installation of the panels unexpectedly allowed the grass to regrow, because wind erosion is halted.
The PV panels actually increase the local heating, but that doesn't need to directly equate to temperature: the wind just carried away the heat so it's someone else's problem :). Also the return of soil moisture thanks to the plants means a return of a sensible heat buffer, so the high temperature in the overgrazed period before solar panel introduction may not actually be an average temperature increase, but an increase in peak temperature during the summer. Imagine problematic summer temperatures, everybody would be talking about the increased temperature, when they are really just experiencing the loss of a heat buffer.
No. It is enough for me to see such a single ridiculous statement of such magnitude to discount the rest of your voluminous contributions to this thread.
I'm dumbfounded, most light incident on a solar panel is not reflected, so logically photons were absorbed, some generated useful electron hole pairs pushing current around the load loop, others recombined and produced heat.
Its an entirely reasonable position in solar panel discussions to say that a 20% solar panel will heat as if 80% of the optical energy incident on the panel was turned into heat. Conservation of energy dictates that the input energy must equal the sum of the output work (useful energy) and output heat.
Not sure what you are driving at here, and just calling a statement ridiculous does not explain your position.
You have not done any real world verification on any of this, you are arguing from a very flawed and overly simplistic lay-persons theoretical model of how solar panels must function in space and then you draw all kinds of conclusions from that model, none of which have been born out by experiment. 25% efficiency for a solar panel means that 25% of the sunlight incident on a panel was turned into electricity. It has nothing to do with how big a fraction is turned into heat, though obviously the more of it is turned into electricity the less there is available to be converted into heat. And it does not account for other parts of the spectrum that are outside of the range that the panel can capture.
That 25% is peak efficiency. It does not take into account:
(1) the temperature of the panel (higher temp->lower efficiency), hence the need for passive cooling of the panels in space due to a lack of working fluid (air).
(2) the angle of the incidence: both angles have to be 'perfect' for that 25% to happen, which in practice puts all kinds of constraints on orientation, especially when coupled with requirements placed on the rest of the satellite.
(3) the effects of aging (which can be considerable, especially in space), for instance, due to solar wind particles, thermal cycling and so on
(4) the effect of defects in the panels causing local failure that can cascade across strings of cells and even strings of panels
(5) the effects of the backing and the glass
(6) in space: the damage over time due to mechanical effects of micro meteorite impact on cells and cover; these can affect the panels both mechanically and electrically
To minimize all of these effects (which affect both operational life span of panels as well as momentary yield) and effectively to pretend they do not exist is proof that you are clueless, and yet you make these (loud) proclamations. Gell-Mann had something to say about this, so now your other contributions suffer from de-rating.
1) yes solar panels should be cooled, but this is feasible with thermal radiation (yes it takes surface area)
2) pointing the panels straight at the sun for a sun-synchronous orbit is not exactly unobtainium technology
3) through 6) agreed, these issues need to be taken into account but I don't see how that meaningfully invalidates my claim that a solar panel operated at 25% efficiency turns ballpark ~75% of incident photons into heat. Thats basic thermodynamics.
I feel like the proposal also glosses over why a merger is necessary and desirable to accomplish the goals.
Why couldn't xAI just, you know, contract with SpaceX to launch its future Datacenters In Space?
Wouldn't a company focused on a single mission, Datacenters In Space, be better at seeing that goal to fruition, instead of a Space Launch Company with a submission of Datacenters In Space, which might decide to drop the project in three years to focus on their core mission of being a Space Launch Company?
Even granting the goal as desirable and possible, why is a merger the best way to pull it off?
You really can't grasp that GPUs scaled at this level is the most ambitious thing possible? That it will be the foundation of unfathomable technological innovation?
Every time I hear stuff like this I think of Tim Curry just barely keeping it together during that one cut scene in Red Alert 3, except this time it's the ultra capitalists trying to corrupt space with capitalism.
Capitalism, as in the worship of capital and its accumulation, is responsible for some major evils in our current world. I am not saying that it is the worst system in existence, just that it is tragically insufficient and we need to seriously think about what we are doing. There are major issues we need to solve that market forces will only make worse.
I'd argue that more free market forces need to be applied to the biggest failings in the US - healthcare costs, housing costs, etc. These industries are over-sheltered by over regulation and political roadblocks. And in what systems are people suffering the most - the ones where the free market has been destroyed by corrupt socialists/communists. In the western hemisphere, Venezuela, Cuba, etc.Look at the turn-around in Argentina from far left to far right economics. It's incredible.
China is an interesting mix though, hard to draw conclusions from there.
> I'd argue that more free market forces need to be applied to the biggest failings in the US - healthcare costs, housing costs, etc.
For housing maybe. It’s useful to have governments nudge developers to build affordable housing, which is less profitable, but if you have enough supply it can work. It does not work in most of Europe, where land is scarce and expensive and developers still want money. More than zoning laws, housing issues in Europe is in large part caused by the lack of government-build (or subsidised) affordable housing on the low end.
For healthcare, hell no! A single payer brings massive economies of scale and a lot of bargaining power, which limits price gouging. Hospitals are local natural monopolies, it makes no economic sense to have enough of them around to have meaningful competition. Demand is very inelastic and people just pay what they must to get treated (when they can pay). Insurance companies have interests that are directly opposed to those of their customers. Most people do not cost much for most of their lives, but have crippling expenses at some unpredictable points when they get sick or have an accident. National social security schemes smooth out the risks over the whole population, which makes everything more manageable. To me, healthcare is the opposite of a situation where free market makes sense.
But everyone is crazy about GPU’s right now. Why not ride that wave for extra investment? All the benefits transfer to all the other things we can do with it.
We also shouldn't overlook the benefits we might realize if humanity achieved the incredible engineering and technical capacity necessary to make this version of porcine flight happen.
IDK, what about the side-benefits of applying the "incredible engineering and technical capacity" to something useful instead? Rather than finding rationalisations for space spambots.
Balloons work by displacing the atmosphere (mostly nitrogen with some oxygen) with something lighter (helium or hydrogen). This causes buoyancy, and makes the balloon rise.
This only works so long as the atmosphere being displaced weighs more than the balloon plus the payload. As soon as the air gets thin enough that the weight of the balloon+payload is equal to the weight of the air that would fill the volume of the balloon, then it stops rising. (Or, more likely the balloon rips open because it expanded farther than it could stretch).
Usually, this is really high in the atmosphere, but it's definitely not space.
This is all ignoring that orbit requires going sideways really, really fast (so fast, actually, that it requires falling, but going sideways so fast that the earth curves away and you miss).
Honestly, there's not a lot else I can think of if your goal is find some practical and profitable way to take advantage of relatively cheap access to near-Earth space. Communication is a big one, but Starlink is already doing that.
One of the things space has going for it is abundant cheap energy in the form of solar power. What can you do with megawatts of power in space though? What would you do with it? People have thought about beaming it back to Earth, but you'd take a big efficiency hit.
AI training needs lots of power, and it's not latency sensitive. That makes it a good candidate for space-based compute.
I'm willing to believe it's the best low-hanging fruit at the moment. You don't need any major technological advances to build a proof-of-concept. Whether it's possible for this to work well enough that it's actually cheaper than an equivalent terrestrial datacenter now or in the near future is something I can't answer.
We have radiators on the ISS. Even if you kept the terrible performance of those ancient radiator designs (regularly exposed to sunlight, simplistic ammonia coolant, low temperature) you could just make them bigger and radiate the needed energy. Yes it would require a bit of engineering but to call it an "unsolved problem" is just exaggerating.
It's a solved problem. The physics is simply such that it's really inefficient.
> ... we'd need a system 12.5 times bigger, i.e., roughly 531 square metres, or about 2.6 times the size of the relevant solar array. This is now going to be a very large satellite, dwarfing the ISS in area, all for the equivalent of three standard server racks on Earth.
The gist of it is that about 99% of cooling on earth works by cold air molecules (or water) bumping into hot ones, and transferring heat. There's no air in space, so you need a radiator 99x larger than you would down here. That adds up real fast.
That’s the secret plan - cover LEO with solar cells and radiators, limiting sunlight on the ground, rendering ground base solar ineffective, cool earth and create more demand for heating; then sell expensive space electricity at a huge premium. Genius!
I think you may be thinking of cooling to habitable temperatures (20c). You can run GPUs at 70c , so radiative cooling density goes up exponentially. You should need about 1/3 of the array in radiators.
Bezos has been pushing manufacturing-in-space for a long time, as a ideal candidate for what to do in space that you might prefer to not do on Earth. Robotics, AI automation, manufacturing - combo it in space, let the robots manufacture for us in space. Abundant energy, low concerns about most forms of pollution. We'll need to dramatically improve our ability to transit mass to and from cheaply first of course (we're obviously talking many decades into the future).
> Bezos has been pushing manufacturing-in-space for a long time, as a ideal candidate for what to do in space that you might prefer to not do on Earth. Robotics, AI automation, manufacturing - combo it in space, let the robots manufacture for us in space.
LOL, this seems so far off from the reality of what manufacturing looks like in reality.
- sending raw materials up there
- service technicians are necessary ALL THE TIME, in fully automated production lines
- sending stuff back down
Maybe I lack vision, but data centers in space is a 1000x times better idea and that is already a terrible idea.
Space manufacturing is a real thing, there are already companies trialling it. The factory is small, satellite sized, and it deorbits when the manufacturing run is done. The results are protected enough for them to be picked up from Earth.
The justification (today) is that you can do very exotic things in zero-G that aren't possible on Earth. Growing ultra-pure crystals and fibre optics and similar.
Ok, that I might buy. If there is a product one can build in zero-G that one cannot build on earth. Especially something like growing crystalls. Sure. But trying to compete with something that can just as well be build on earth on the premise that it will be cheaper to do the same thing just in space is insane.
It's the same issue that I have with data centers in space. I don't think there is any big technical hurdle to send a GPU rack into space and run it there. The problem is that I have a hard time to believe it is cheaper to run a datacenter in space. When you have to compete solely on cost, it will super hard.
I don't think it's insane. It might not work or be competitive but it's not obviously insane.
In a frictionless economy governed by spherical cows it'd be insane. But back here on Earth, AI is heavily bottlenecked by the refusal or inability of the supply chain to scale up. They think AI firms are in a bubble and will collapse, so don't want to be bag holders. A very sane concern indeed. But it does mean that inferencing (the bit that makes money) is constantly saturated even with the industry straining every sinew to build out capacity.
One bottleneck is TSMC. Not much that can be done about that. The other is the grid. Grid equipment manufacturers and CCGT makers like Siemens aren't spinning up extra manufacturing capacity, again because they fear being bag holders when Altman runs out of cash. Then you have massive interconnection backlogs, environmentalists attacking you and other practical problems.
Is it easier to get access to stable electricity supplies in space? It's not inconceivable. At the very least, in space Elon controls the full stack with nearly no regulations getting in the way after launch - it's a pure engineering problem of the sort SpaceX are good at. If he needs more power he can just build it, he doesn't have to try and convince some local government utility to scale up or give him air permits to run generators. In space, nobody can hear you(r GPUs) scream.
> "At the very least, in space Elon controls the full stack with nearly no regulations getting in the way after launch - it's a pure engineering problem of the sort SpaceX are good at. If he needs more power he can just build it, he doesn't have to try and convince some local government utility to scale up or give him air permits to run generators. In space, nobody can hear you(r GPUs) scream."
Wouldn't he be able to float solar panels and GPUs out into international waters and run them on cargo ships powered by bunker fuel much (much much) cheaper than launching them into space?
Building nuclear-powered and solar powered datacenters in places with low population density will still be cheaper. Do you think Mongolian government won't allow China to build datacenters if the price is right?
It might be easier in China but that doesn't help Elon or Americans.
Solar powered datacenters on Earth don't make sense to me. The GPUs are so expensive you want to run them 24/7 and power cycling them stresses the components a lot so increases failure rate. Once it boots up you need to keep the datacenter powered, you can't shut it down at night. Maybe for CPU datacenters solar power can make sense sometimes, but not for AI at the moment.
Nuclear is super hard and expensive to build. It probably really is easier to put servers in space than build nuclear.
It’s not necessarily cheaper energetically to get stuff from an asteroid than from Earth. You’d have to accelerate stuff from a wildly different orbit, and then steer it and slow it down. Metric tonnes of stuff. It’s not physically impossible, but it is wildly expensive (in pure energy terms, not even talking about money) and completely impractical with current technology. We just don’t have engines capable of doing this outside the atmosphere.
> It’s not necessarily cheaper energetically to get stuff from an asteroid than from Earth. You’d have to accelerate stuff from a wildly different orbit, and then steer it and slow it down.
Delta V from just about anywhere in the solar system is lower than launching from the surface of Earth. You could launch stuff from Mars and bring it back to Earth orbit with less energy than launching it from Earth. The rocket equation is really punishing.
Right. The alternative is not to send materials from Earth for processing in space, that would be stupid. We send finished stuff, which were manufactured on the ground. But you don’t mine finished widgets from asteroids. You mine ore that needs refining and processing before being used to manufacture things. This ore is orders of magnitude heavier than the finished products, never mind all that’s required to do anything useful with it.
I think you might have no sense of what it takes to go from a raw mined material to something that can be used in a factory. I am not saying it cannot be done. I am just saying it cannot be done in a way that is cheaper than on earth.
The show For All Mankind kind-of hinted at how the labor problem would be solved: recruit like the military and promise huge bonuses that will probably not be realized because space is risky business
I think it makes more sense if you invert the manufacturing cycle.
Automated asteroid mining, and asteroid harvesting, are potential areas where we have strong tech, a reasonable pure automation story, and huge financial upsides. Trillion dollar asteroids... If we’re sourcing metals out there, and producing for orbital operations or interplanetary shenanigans, the need for computing and automation up there emerges.
And I imagine for the billionaire investor class now is the window to make those kinds of plays. A whole set of galactic robber barons is gonna be crowned, and orbital automation is critical to deciding who that is.
When Bezos first mentioned drone delivery, many intelligent, serious people laughed at it and accused of Bezos running out of ideas as Amazon was stagnant
That is a fun thought experiment, as we wouldn't want to manufacture too far away from earth we may still be within the earth's atmosphere. I wonder what effect dumping greenhouse gases into the very upper levels of the atmosphere would have in comparison to doing it lower down. My assumption is it would eventually sink to a lower density layer, having more or less the same impact.
I once had a job mopping floors and was quite successful at it, even if I say so myself. Based on my experience, do you think it is reasonable for me to claim that I will eventually develop techniques for cleaning the oceans of all plastic waste? Folks are criticizing the pie in the sky claims, not that they can do anything at all.
Seems a bit of both. But no disparagement to your floor mopping (as I once was a dishwasher in a commercial kitchen myself), but there's a big gap between cleaning a floor, or a dish, and creating frontier models and spaceships.
That said: I think solar is niche, and a moon-shot for how they want it. Nuclear is the future of reliable energy for human civilization.
I think the K-scale is the wrong metric. I don't think we should be trying to take all the sun's energy as a goal (don't blot out the sun! don't hide it in a bushel!), or as a civilizational utiltiy - I'm sure better power supplies will come along.
Data centers ultimately need to provide power and remove heat. Solar might be a little easier for power in space, maybe, but heat is an absolute no-go, stop, this will never ever work. You can't engineer your way out of the fact that space is a vacuum.
if the thermal radiation panels have ~3 x the area of the solar panels, the temperature of the satellite can be contained to about 300 K (27 deg C). Ctrl+F:pyramid to find my calculations.
I looked, and you outlined a solution that would be hard to achieve in a vacuum chamber on earth. Now we're going to launch it into orbit and it will work great?
Building data centers in Antarctica with nuclear power would be easier. And still way harder than necessary.
Yes, how would you simulate a 4K background in a vacuum chamber on earth... or you could just trust a law that has withstood 150 years the test of time by physicists...
What have the engineers at XAI accomplished? From the ground level, it seems they followed the same research all the other LLM chatbot companies did. They followed along and made a sassy mecha hitler who makes revenge porn.
So, the much lauded xAI is overhyped, underwhelming and ... kind of evil? In stark contrast to every other AI company, I suppose?
And people are using it for revenge porn? I haven't seen that. I've just seen that grok pioneered really good deep web search, is less woke than other LLMs and grok imagine has really good video generation and pretty good image gen. Plus the X timeline feed is really good!
> It said the alleged offences it was investigating now included complicity in the possession and organised distribution of child abuse images, violation of image rights through sexualised deepfakes, and denial of crimes against humanity.
There's no reason to think the brilliant minds at SpaceX are supportive of focusing their mission in any manner-what-so-ever on datacenters in space. You can't call on their genius as the supportive argument accordingly.
I disagree, I think the idea of a cabal of reactionary comrades inside SpaceX is activist fantasy. I think SpaceX only does what it does with full committment of its people: mind, body, spirit.
I think there's a scenario where that's true: one where the head of your company is collaborative and deferential to expertise.
There's another scenario, though: one where the head of your company is a bull in a China shop, whose successes have come almost exclusively through a Barnum-esque scheme of cascading bravado and marketing genius without much expertise, but a marvelous ability to sell any idea purely via unearned gravitas.
The former is less sexy: I've compiled loads of talented people, and we're going to solve very hard problems, even some that seem impossible.
The latter is very sexy: I'm a genius and we're going to accomplish the impossible in one year via sheer force of my grand will. And even if it doesn't actually happen, I'll sell you on the next vision.
It seems like you’re ascribing to Elon some kind of magic, where you feel he’s breaking the rules of what should be allowed in order to achieve success. Is it impossible you simply don’t understand how what he does works?
So your hypothesis is Elon's domineering personality creates a culture of terrified silence where everybody wants to revolt but Elon is simply too powerful and they have no choice - and this extends to customers, sales and even technology - reality itself bends to the will of mighty Elon? And that's ... unfair?
Ok, I'm sorry, I'll try again. Seems I've missed your point a few times now, may be projecting my own perspecitve there.
So...it's not that you don't understand how what Elon does works, you do understand it, and your descrpition of him is accurate, you just seem to think it's unfair that it does work? "unearned gravitas" "w/o much expertise" "sheer force of grand will"
So you're saying Elon isn't a deferential technically-talented leader, he's wilful and a marketer, who you feel constantly changes course, and so maybe the people who work for him are not as aligned as I believe with what he's doing?
Well, an LLM is a mirror, right? Maybe you were just using it wrong? Can you give any examples of what you used it for that led you to believe it's what you said?
I don't think your view is based on personal experience, but you get my, point, yes?
The feeling I get about you here is you simply dislike his companies and Musk and am enjoying seeing him get what he deserves, right? Which I think is the personal mirror of the "state feeling" behind the current official actions.
More broadly, your comments and many others like it in these threads, identify a narrow band of content with the product as a whole. And the implication being if you disagree with hatred against Musk / xAI, you must be a pervert. Which is intended as a reputational threat to intimidate people into not voicing support.
But if an LLM is used to create bad content by some, does that mean the only content it can create is bad? Does that mean that every user is using it to create bad content?
If xAI has a problem with bad content, they need better controls. I don't think these state efforts nor discourse are about the bad content. I think that issue is just a vector through which to assert pressure. I think it's because people in power want control over something that is, annoyingly to them, resisting control. And not in a way that's about "bad content", but in a way that's about inconvenient-to-them content.
No, I know that. I wasn't actually implying you were personally across this. Just highlighting how personal experience differs. I don't think you're making it up, at all, I just think there's a larger story, and more nuance to the product overall.
Fair enough on your musk views - did he really encourage people to do disturbing stuff? Can you point to that? I have not seen it.
When a cultist hits you with their side of, ahm, facts, it invariably ends up being some kind of a logical fallacy. Is there a name for this phenomenon?
In this case it is the "how we dare not trusting all the experts at spaceX."
But even the fallacy itself is applied incorrectly, as we hear zero from anyone else other than the cult leader himself.
So I am a cultist and Elon is cult leader? I think the problem with that is they actually create value in terms of products that work and sell. A cult leader would be more about rhetoric and less about results, I guess? Why does Elon make you so mad?
Oh I thought I was the cultist because my OG comment was saying how dare we not trust the xAI experts. Perhaps you were projecin on that?
I may have been projecting in my interpretations here - I have strong pre-existing beliefs/feelings about Elon being called meritless and claims he didn't "earn" his success. I might have a tendency to see things through that frame.
Tho, I'm quite sure somebody called me a cultist, hahaha. Seems tho I did not intend it, you ended up mad about this. I hope you feel better.
Nope, it's 100% about building the stock valuation of SpaceX for an IPO in the face of significant risk from a cold war its CEO started on X with the U.S. federal government and increasing competition from Blue Origin, Quinfan and Guowang. DOD will play Bedrock vs Grok until there is feature parity and then make a decision not based on the features.
Disclaimer: Not an Elon hater, but far from a sycophant, similar to how I felt about Steve Jobs for 40+ years.
Exactly, this is about attaching the AI hype bubble to all of his dealings before he offloads with an IPO (that still leaves him with 75% of the stock).
The Technology Connections Youtube channel recently did a great video arguing pretty convincingly that the land used to grow corn for cars would be vastly more efficiently used from an energy perspective if we covered it with solar panels.
Even if the source of electricity used to charge an EV is mostly generated by fossil fuels, EVs are still probably more energy efficient because gas powered cars are not particularly efficient at turning gasoline into useful energy compared to the efficiency of larger scale power plants.
Also as you point out, non-fossil fuel energy is becoming a larger part of the grid over time, so an EV you buy today will become cleaner over time, while the fossil fuel reliance of a gas car purchased today will never improve.
Honestly the biggest blocker for EVs from my perspective is charging infrastructure. Public fast charging sites are too uncommon compared to gas stations and a less than ideal solution to use for all of your charging needs and lots of people live in housing where installing a charger at home is difficult or impossible. Eventually both of those will change, but it will lag significantly behind the quality of the vehicles themselves.
The interesting thing to me is that even for people who can't charge at home, EVs and charging infrastructure have reached the tipping point where they're at least viable. They're less convenient in such situations than a gas powered car and so will be limited to people who are extra motivated for one reason or another. But the EV world is over the "possible" hurdle so the "practical" threshold seems inevitable.
That idea seems like a pretty common one around this issue. While it's not entirely unreasonable on the surface, I'm skeptical of a political argument where only one side is expected to be fully paid up adult members of society with agency and responsibility not only for their behavior for the behavior of others.
For one thing, it feels just as temptingly righteous and insulting to treat your opponents as overgrown toddlers with oppositional defiant disorder as it does to call them stupid. Arguably it's worse, since the implication in calling them stupid is that you would like them to be less stupid and fully expect they are capable of doing so, but the implication in treating them like toddlers is that you expect them to continue to act like toddlers and will adjust your behavior accordingly to get them to eat their vegetables.
Maybe more importantly though, it feels like a huge trap. Far from defusing an effective political strategy, accepting that you are responsible for choices and behavior of others gives them endless license to do bad things free from any feeling of personal responsibility that should come with those actions in a civilized society. Even if you can win on vaccines, the precedent set with that approach is less than ideal.
> The expansion of the federal government, especially the powers of the executive branch, is the problem everyone seems to dislike (when their favored party isn't controlling this branch), and that's what needs to change
Yeah but it's not going to, because the modern environment deeply favors a stronger federal government, no matter how much people might complain about it when they don't control said federal government. Arguably it's not even a "problem" so much as an inescapable result of the fact that the world of 2026 is vastly different than it was 250 years ago. A country composed of independent but united states makes a lot more sense when the fastest means of travel between them was a horse rather than an airplane or when your best bet for sharing information was...also a horse...rather than the Internet.
The real question is how you work with a system based on the idea of independent states where political power results almost entirely on the distribution of states that align with one of two dominant national ideological camps.
Any reasonable substantive analysis of the situation can't possibly limit itself to just the direct benefits of "having Denmark in our camp", especially considering the context of this thread. Would having the support of Denmark be the make or break factor in a war between the US and China? Almost certainly no. Would the second and third order effects of the US ending its alliance with Denmark and/or NATO, and potentially turning them into enemies, by forcibly taking over Danish territory or something similar impact the US ability to fight a war with China? Almost certainly yes.
Looking at it in terms of the direct near-term military benefit of NATO in a conflict with China is focusing on the wrong thing. The real question isn't how strongly NATO membership would directly benefit the US military in a conflict with China; it's how strongly the act of blowing up the NATO relationship would negatively impact the US ability to deal with China in a future conflict. And those are two extremely different questions.
Are the French going to be parking the Charles de Gaulle alongside American aircraft carriers in the Taiwan Strait if push comes to shove in the Pacific? I wouldn't entirely discount it. But maybe more importantly, even if they're not, does making an enemy of the EU negatively impact the ability of the US to park American aircraft carriers there? Certainly damage to the Atlantic trade relationship is unlikely to do the US any favors economically, which is important if the US wants to keep funding the Navy. And a potential loss of European controlled military bases has the potential to negative effect the US military's logistics, which is where the real superpower status comes from. Maybe most significantly, how would such a shift in alliances impact the willingness of Pacific allies to support the US, which obviously does have a direct impact on any conflict with China.
I used to have that perspective, but I actually think it's even simpler than selective application of principles or hypocrisy as the parent commentator put it. It's not so much that they believe in an ideal but struggle to apply it when doing so isn't in their favor and more that their guiding premise is that things should always go their way and they adopt the language, but not the intent, of a deeper principle because it sounds like a better justification.
A more sci-fi apocalyptic angle on this fact is the argument that fossil fuels, especially easily accessible ones, are necessary to bootstrap a futuristic multi-planetary civilization. They provide the easy energy necessary to support an industrial revolution and the society and technology level necessary for more advanced and renewable forms of energy necessary to really build and sustain an advanced civilization long term.
But because they take so long to form, stumbles along the path of energy advancement mean a planetary civilization could run out of fossil fuels before reaching the level of advancement necessary to move beyond them. At that point, the civilization is essentially doomed since they lack the technological ability to move beyond fossil fuels and they lack the energy resources necessary to develop that technology.
The idea of being anti-AI for art or game design vs pro-AI for software or websites is interesting because it presumably reflects the fact that those people value art and game design more than they do software or websites. Their view of AI is as a means to an end for stuff that's necessary but low value to them while preserving the human touch for stuff that matters more.
This actually doesn't seem that unreasonable or inconsistent with how most people treat technology or similar conveniences. Many if not most people value a human component for things they think are important, even if it costs more or has other tradeoffs.
Think about it. Elon conjures up a vision of the future where we've managed to increase our solar cell manufacturing capacity by two whole orders of magnitude and have the space launch capability for all of it along with tons and tons of other stuff and the best he comes up with is...GPUs in orbit?
This is essentially the superhero gadget technology problem, where comic books and movies gloss over the the civilization changing implications of some technology the hero invents to punch bad guys harder. Don't get me wrong, the idea of orbiting data centers is kind of cool if we can pull it off. But being able to pull if off implies an ability to do a lot more interesting things. The problem is that this is both wildly overambitious and somehow incredibly myopic at the same time.
reply